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Abstract

The computation of statistical averages is one of the most important applications of molecular dynamics
simulation, allowing for the estimation of macroscopic physical quantities through averages of observ-
ables sampled along microscopic trajectories. In this article, we investigate the impact of discretization
error on the accuracy of molecular dynamics averages. Given a Hamiltonian system and a symplectic
integrator, new weighting methods are derived to better approximate averages of certain observables,
without changing the system or integrator. These new methods are shown to reduce discretization error
and enhance the order of accuracy without high-overhead calculations.

Keywords: molecular dynamics, statistical mechanics, ensemble averages, symplectic integrators,
Nosé-Poincaré Hamiltonian

1. Introduction

Classical molecular dynamics (MD) is a widely used tool in a variety of fields, including computational
chemistry, physics, and materials science [3, 14, 29]. Statistical mechanics provides a connection between
macroscopic physical properties and ensemble averages of microscopic molecular motion [22, 32], which
can be simulated numerically using MD. However, accurate simulation of physically relevant phenomena
is a challenging task, requiring extremely long simulations on large computers due to the wide range of
spatial and temporal scales, which imposes severe limitations on the timestep.

The primary goal of MD is to compute averages and correlations along a trajectory, rather than the
trajectory itself. For this reason, it is important to use theory and methods which focus on the statistical
properties of the trajectory. Although computed numerical trajectories may fluctuate and drift away from
the exact dynamics of the molecular model, the resulting averages remain valid provided the numerical
trajectories have the correct statistical properties.

Techniques for estimating and correcting statistical and discretization error in MD simulation has
been explored before [7, 8, 10, 11, 13, 17, 26, 30, 33]. The foundation of our analysis of MD averages is
based on backward error analysis for symplectic integrators applied to Hamiltonian systems. In section 2,
we introduce specific Hamiltonian systems and statistical ensembles used in MD simulation. Due to the
chaotic nature of MD trajectories, small numerical errors lead to large forward error, and as a consequence,
forward error analysis is not applicable for understanding MD averages. Instead, our focus will be on
backward error analysis, using the method of modified equations. This involves deriving a modified vector
field, the dynamics of which is arbitrarily close to the numerical trajectory [4, 15–17, 23, 26–28, 31]. Under
certain assumptions of ergodicity, the difference between exact and numerical averages can be analyzed by
measuring the change in the average after perturbation to the vector field. In section 3, we provide a brief
review of backward error analysis, focusing on the application of symplectic integrators to Hamiltonian
systems, which has considerable advantages since the modified equations are also Hamiltonian.
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The error in MD averages can be roughly decomposed into two terms: statistical error and discretiza-
tion error. Statistical error can be attributed to the use of finite-length trajectories, which results in
insufficient sampling. On the other hand, the discretization error is associated with the large timestep
size. The focus of this article is on the discretization error, which under certain assumptions, can be
interpreted as a modification to the Hamiltonian. In section 4, we will introduce methods to approxi-
mate this error for two systems. This first system is classical Hamiltonian dynamics, corresponding to
the microcanonical (constant energy) ensemble. For this system, we introduce techniques for measuring
and correcting the discretization error in numerical averages. The second system is the extended Nosé
Hamiltonian system used to generate dynamics from the canonical (constant temperature) ensemble. For
this system, we derive a formulation for determining a “weighting” factor introduced in [5], which again
allows for the correction of discretization error in numerical averages. These new methods introduce
additional computational overhead during the post-processing of simulation data. In section 5, we derive
finite difference estimates which dramatically reduce the complexity. Finally, we present some numerical
results in section 6.

2. Molecular dynamics averages

One of the most important applications of classical MD is the computation of a statistical average
along a trajectory, or collection of trajectories [3, 5, 14, 18]. In this paper, we will assume that each
trajectory is generated by solving an ordinary differential equation (ODE) of the form

d
dt

z (t) = F (z (t)) ,

with z (0) = z0 ∈ R6N . Here, z (t)T =
[
q (t)T p (t)T

]
is a vector containing the positions, q (t) ∈ R3N ,

and momenta, p (t) ∈ R3N , of N atoms at time t. For an isolated system, the system of equations for
Hamiltonian H : R6N → R is

d
dt

z (t) = J∇zH (z (t)) ,

where J is the skew-symmetric symplectic structure matrix

J :=
[

0 I
−I 0

]
.

For the special case of Newton’s equations of motion,

dqi
dt

= m−1
i pi,

dpi
dt

= −∂U(q)
∂qi

,

where U is the potential energy function and mi is the mass associated with the ith component of the
momenta, one can show that the Hamiltonian is

H (q,p) =
1
2
pTM−1p + U (q) ,

where M is a diagonal mass matrix.
For a given observable A : R6N → R, the time average along a trajectory with initial condition z0 is

defined as
〈A〉z0,time := lim

τ→∞

1
τ

∫ τ

0

A (z (t)) dt.

On the other hand, the ensemble average [9, 18, 22, 32] is given by

〈A〉ens =
∫

Ω

A (z) ρens (z) dz,

2
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where ρens is an invariant distribution for the dynamics. If the system is ergodic, one can show that these
averages are the same,

〈A〉ens = 〈A〉time,

for all initial conditions outside a set of measure zero [32].
The evolution of a distribution of configurations in phase space, ρ, under the flow of a vector field, F ,

can be described by the Liouville equation [32]

∂ρ

∂t
+∇ · (ρF ) = 0.

Alternatively, this can be rewritten in terms of a material derivative, which results in

Dρ

Dt
+ ρ∇ · F = 0.

If the vector field is Hamiltonian, one can show that it is divergence-free, the material derivative of ρ is
zero, and

ρ ∝ δ[H − E]

is invariant, where H is the Hamiltonian and E is the energy.
For a system in contact with a heat bath (at constant temperature), the configurations are distributed

according to the Gibbs (or canonical) ensemble,

ρc(z) =
1
Cc

exp(− 1
kBT

H(z)). (1)

Here, kB is Boltzmann’s constant, T is the temperature, and Cc is a normalizing constant.
To show that an invariant distribution is unique, one must prove the system is ergodic. Due to the

presence of first integrals (e.g., conservation of energy or momentum) a trajectory may be confined to a
submanifold of phase space. One must account for these first integrals to make a connection between the
dynamics of a single trajectory (or small set of trajectories) and the invariant distribution. For example,
for the microcanonical ensemble, energy is conserved, which means the Hamiltonian is a first integral
of the motion. If the system also has in addition k first integrals Ii, with constant values Ci, then the
invariant distribution ρ becomes

ρ =
1
C
δ[H − E]δ[I1 − C1] · · · δ[Ik − Ck],

where E is the energy and C is a normalizing constant.

3. Backward error analysis

In traditional forward error analysis, the error in a trajectory generated by an rth-order numerical
method is bounded by

‖z(tn)− z̃n‖ ≤ C1∆tr exp (C2tn) ,

where
{
z(t)

∣∣t ≥ 0
}

and
{
z̃n
∣∣n = 0, 1, . . .

}
are the exact and numerical trajectories, respectively. Here, ∆t

is the timestep size, and the constants C1 and C2 depend on the particular vector field and the numerical
method. For MD, C2 is positive, thus a bound of this form is useful only over short time intervals. In
addition, the ergodic hypothesis implies that statistical averages should not depend on the details of the
initial conditions. Therefore, a different technique is needed to analyze the error in long time averages.

A more practical error bound for MD can be derived using backward error analysis. In this framework,
discretization error arising from the application of a numerical integrator is interpreted as a perturbation
to the vector field, using the method of modified equations. For each compact set K of the phase space,
there exists a finite constant CK such that∥∥∥F̃ (z)− F (z)

∥∥∥ ≤ CK∆tr, ∀z ∈ K,

3
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where F (z) is the vector field for the exact trajectory, F̃ (z) is the modified vector field, and r is the
order of the numerical method used to generate the trajectory. For a symplectic integrator applied to a
Hamiltonian system, one can show that there exists a modified system whose dynamics is exponentially
close to the numerical trajectory for an exponentially long time [4, 15, 17, 21, 23, 26–28, 31].

Although the numerical trajectory does not exactly interpolate the flow of the modified vector field,
it is useful as a truncated series in the context of geometric integrators. If the numerical method pre-
serves certain geometric structures, then the modified equations also preserve the same structures. In
particular, if we apply a symplectic integrator to a Hamiltonian vector field, the modified vector field is
also Hamiltonian. Here, we denote this modified Hamiltonian as H̃. One can show that

H̃(z) = H(z) + ∆trH1(z,∆t) +O
(
∆tr+1

)
,

for small ∆t, where H1 is the first term in a series expansion.

4. Errors in averages

The error in a time average along a numerical trajectory can be expressed as a sum of two terms [7, 8],

|〈A〉exact − 〈A〉num| ≤ Cs/
√
t+ Ct∆tr.

Here, 〈A〉exact is the average of A over the exact trajectory using an infinite time interval and 〈A〉num is
the average of A over a finite-length numerical trajectory. The first term is statistical error, which results
from the finite length of the simulation. Typical statistical error converges at a rate inversely proportional
to the square-root of the simulation time. The second term is truncation error, which results from the
non-zero step size in the rth-order numerical method used to generate the trajectory. The goal of this
paper is to save computation time by estimating and correcting for discretization error in computed
averages using a single simulation, without modifying the numerical integrator, and without performing
multiple simulations using differing timestep sizes.

4.1. Expansion of the delta function
In this section, we show how to calculate the change in an ensemble average resulting from a small

perturbation to the Hamiltonian using an expansion of a delta function. We use notation 〈A〉H for an
average of A taken from the Hamiltonian surface, H−1(E), and 〈A〉H̃ for an average of A taken from
the modified Hamiltonian surface, H̃−1(Ẽ). A related method was introduced in [30]. Without loss of
generality, we will assume that H and H̃ are shifted in such a way that H(z0) = H̃(z0) = 0, where z0

is the initial condition. The direction for the expansion is determined by the choice of a vector field w,
which leads to an expression for the change in the average characterized by the following proposition.

Proposition 1. Let H be a C1 energy function with H−1(0) compact. Let H̃ be a C1 modified energy
function, with H̃ = H + εG and H̃−1(0) compact. Suppose w is a given C1 vector field with w · ∇H 6= 0
everywhere on H−1(0). The change of the microcanonical average of a given C1 observable A can be
expressed as

〈A〉H − 〈A〉H̃ = 〈∇ · (uA)〉H̃ − 〈A〉H̃〈∇ · u〉H̃ +O
(
ε2
)
,

where
u := (H̃ −H)

w
w · ∇H

= εG
w

w · ∇H
,

assuming ε << 1.

Proof. Expanding δ
(
H
)

about δ
(
H̃
)
, we have∫

Aδ
(
H
)
dz =

∫
Aδ
(
H̃
)
dz − ε

∫
GAδ′

(
H̃
)
dz +O

(
ε2
)
. (2)

4
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Using the directional derivative, it can be shown that∫
GAδ′

(
H̃
)
dz =

∫
GA

w
w · ∇H̃

· ∇δ
(
H̃
)
dz = −

∫
∇ ·
(
GA

w
w · ∇H̃

)
δ
(
H̃
)
dz

for any differentiable vector field w. The boundary term vanishes under reasonable assumptions on H̃ at
the boundary phase space. Inserting this expression into (2) and using the definition of u, we have∫

Aδ
(
H
)
dz =

∫
Aδ
(
H̃
)
dz +

∫
∇ · (uA) δ

(
H̃
)
dz +O

(
ε2
)
,

and hence

〈A〉H =

∫
Aδ
(
H
)
dz∫

δ
(
H
)
dz

=
〈A〉H̃ + 〈∇ · (uA)〉H̃

1 + 〈∇ · u〉H̃
+O

(
ε2
)
.

Subtracting 〈A〉H̃ from both sides and combining terms, we have

〈A〉H − 〈A〉H̃ =
〈∇ · (uA)〉H̃ − 〈A〉H̃〈∇ · u〉H̃

1 + 〈∇ · u〉H̃
+O

(
ε2
)
.

Note that since the numerator is of order ε and the denominator is 1 plus order ε, the denominator can
be ignored, and we arrive at the desired result.

There is some freedom in the choice of the vector field w. In principle, almost any w will work, so
long as the resulting u is defined and differentiable everywhere. A natural choice is to set w = ∇H,
which reduces the possibility of division by zero.

One disadvantage of using the expression in Proposition 1 is that it requires differentiating the ob-
servable, A. This is typically inconvenient in the context of a molecular dynamics software package which
supports a wide range of user supplied observables. To avoid explicit calculation of the derivative of A,
we introduce the following mapping

f̂(z) := z +
H̃(z)−H(z)
∇H(z) ·w(z)

w(z) = z + u(z),

where w and u are as defined in Proposition 1. This mapping can be derived by expanding H(f̂(z)) = 0
under the assumption that H̃(z) = 0 and H(z) is small. Composing A with f̂ and expanding, we find

A(f̂(z)) = A(z) + u(z) · ∇A(z) +O(ε2),

assuming u = O(ε). Using this expansion, we can approximate

∇ · (u(z)A(z)) = A(z)∇ · u(z) +A(f̂(z))−A(z) +O(ε2),

and the expression in Proposition 1 can be rewritten as

〈A〉H = 〈A∇ · u〉H̃ + 〈A ◦ f̂〉H̃ − 〈A〉H̃〈∇ · u〉H̃ +O
(
ε2
)
.

For the special case when w = ∇H, we have

〈A〉H =

〈
ωA ◦ f̂

〉
H̃

〈ω〉H̃
+O(ε2), (3)

where the weight, ω, is defined as

ω :=
∇H̃ · ∇H
∇H · ∇H

−H ∇ · (∇H)
∇H · ∇H

+ 2H
∇HTH

′′∇H
(∇H · ∇H)2

. (4)

5
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Note that ω = 1 +∇ · u on ˜H−1(0).
Alternatively, if we select w such that w · ∇A = 0, then

〈∇ · (uA)〉H̃ = 〈A∇ · u〉H̃ ,

and we do not need to compute the gradient of A. For example, if A is a function of only the position q,
then we can select w (q, p)T =

[
0T ,v(q,p)T

]
for any vector field v.

If the system has multiple invariants, Proposition 1 can be generalized for special cases. Consider
a component of the linear or angular momentum, which is preserved by the Verlet method [17]. The
average of A becomes

〈A〉H =
1
C

∫
Aδ(I1) · · · δ(Ik)δ(H)dz,

where I1(z) = · · · = Ik(z) = 0 are the corresponding k-additional integral invariants. In general, w
should be orthogonal to each ∇Ii. For example, we can choose

w = ∇H − ∇H · ∇I1
∇I1 · ∇I1

∇I1, (5)

to orthogonalize w with respect to the first additional integral invariant preserved by the integrator,
repeating the procedure for each additional invariant. This construction can be extended to first integrals
not exactly preserved by the integrator if the corresponding modified first integrals are known. However,
modified first integrals may not exist unless I is separable [34], i.e., I = Iq(q) + Ip(p).

4.2. Constant temperature using the Nosé-Poincaré Hamiltonian
For the canonical ensemble case, we can use the Nosé-Poincaré Hamiltonian [6, 12]

HNP = s(HN −H0
N),

where H0
N is selected so that HNP(z0) = 0 for the initial condition z0, and HN is the Nosé Hamiltonian [24,

25]

HN = H(q, p̃/s) +
p2
s

2µ
+ gkBT ln s.

Here, H is the physical energy function, g is the total number of degrees of freedom of the physical
system, kB is the Boltzmann constant, T is the target temperature, µ is a thermostat mass parameter
that effectively allows the strength of dynamic coupling to be adjusted, s is an extended position variable,
ps is an extended momentum variable, q is the vector of positions, and p̃ is a vector of canonical momenta.
The vector of canonical momenta, p̃, is related to the physical momenta, p, through a scaling p = p̃/s.
Assuming ergodicity, one can show that

〈A(q, p̃/s)〉HNP = 〈A(q,p)〉c,

where 〈·〉HNP is the microcanonical average with respect to the Nosé-Poincaré Hamiltonian in extended
phase space, and 〈·〉c is the canonical average with respect to H,

〈A(q,p)〉c =
∫
A(q,p)ρc(q,p) dqdp,

where ρc is the canonical ensemble defined in (1). A proof of this result can be found in [6].
To derive a procedure for correcting averages, we assume that there exists a modified probability

density function, ρ̃, which is close to the exact probability density function, ρc, and can be written in the
form

ρ̃ (z)ωc (z) = ρc,exact (z) ,

where the spatially varying weighting factor, ωc, is computed from backward error analysis [5]. Under
certain assumptions, the weighting factor is nearly unity, ωc (z) = 1 + O (∆tr), and can be used to

6
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post-process statistical averages of an observable A. Assuming a sufficiently long simulation, a higher-
order approximation for the average of A can be computed using a weighted average along the numerical
trajectory,

〈A〉exact = 〈Aωc〉num/〈ωc〉num +O (∆tp) ,

where p > r. This is in contrast to the unweighted average which is only provides an rth-order approxi-
mation to the average.

Applying the generalized leapfrog algorithm (GLA) to the Nosé-Poincaré equations results in the
following numerical algorithm

p̃n+ 1
2 = p̃n − ∆t

2
sn∇U(qn)

p
n+ 1

2
s = pns +

∆t
2

(
(p̃n+ 1

2 )TM−1p̃n+ 1
2

(sn)2
− gkBT −∆HN(qn, sn, p̃n+ 1

2 , p
n+ 1

2
s )

)
sn+1 = sn +

∆t
2

(sn + sn+1)pn+ 1
2

s /µ

qn+1 = qn +
∆t
2

(
1
sn

+
1

sn+1

)
M−1p̃n+ 1

2

pn+1
s = p

n+ 1
2

s +
∆t
2

(
(p̃n+ 1

2 )TM−1p̃n+ 1
2

(sn)2
− gkBT −∆HN(qn+1, sn+1, p̃n+ 1

2 , p
n+ 1

2
s )

)
p̃n+1 = p̃n+ 1

2 − ∆t
2
sn+1∇U(qn+1)

, (6)

where ∆HN := HN − H0
N , is the deviation in the Nosé Hamiltonian. This method, also known as the

Nosé-Poincaré method [6], is symplectic, time-reversible, and second-order accurate.
In the following proposition, the modified distribution ρ̃ for the Nosé-Poincaré method is derived using

the microcanonical distribution for the Nosé-Poincaré Hamiltonian over the extended phase space (in-
cluding both the physical and the thermostat degrees of freedom). A weighting factor, ωc, was previously
derived for this method under the assumption that the constant H0

N is perturbed so that the modified
Nosé-Poincaré Hamiltonian is a Poincaré transformation of a modified Nosé Hamiltonian, rather than
setting HNP(z) = 0 (see [5] for details). Here, we follow the derivation presented in [5], but generalize
the result to the case where the modified Nosé-Poincaré Hamiltonian is small, but not shifted to zero.

Proposition 2. Assuming ergodicity, and that gkBTeη̂ >> O(H0
N), a modified invariant distribution for

Nosé-Poincaré method can be calculated as

ρ̃ =
ρc

C̃
exp{f1(q,p)}

(
1 +

√
1− 1

g

H0
N

kBT
exp

{
−f1(q,p)

g
− H −H0

N

gkBT

})
+O(∆t4), (7)

where C̃ is a constant,

f1(q,p) =
−(∆t)2

24kBT

∑
j

∑
k

2pjpkUqjqk

mjmk
−
∑
j

U2
qj

mj
− 1
µ

∑
j

p2
j

mj
− gkBT

2
 ,

with timestep ∆t, and

ρc =
1
Cc

exp{− 1
kBT

H(q,p)}.

Proof. Following the derivation in [5] equation (3.9), the modified distribution for the modified Hamilto-
nian is derived as

ρ̃(q,p) dp dq =
1
C

∫ ∫
δ
[
s
(
HN −H0

N + εH1 −H0
N/s

)]
dp̃ dq dps ds.

Applying a change of variables, p̃/s to p and ln s to η, gives

ρ̃ =
1
C

∫ ∫
e(Nf +1)ηδ

[
eη
(
H(q,p) + p2

s/2µ+ gkBTη + εH1(q, eη,p, ps)−H0
N −H0

N/e
η
)]
dps dη.

7
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Denote r(η) = eη
(
H(q,p) +

p2
s

2µ
+ gkBTη + εH1(q, eη,p, ps)−H0

N −
H0

N

eη

)
and the root of r(η) as η̂.

Using the identity δ[r(η)] = δ[η − η̂]/|r′(η̂)|,

ρ̃ =
1
C

∫
eNf η̂

∣∣∣∣gkBT + ε
∂

∂η
H1(q, eη,p, ps) +

H0
N

eη

∣∣∣∣−1

η=η̂

dps.

Using the Nosé-Poincaré method, we find the modified Nosé-Poincaré Hamiltonian H̃ = H+εH1 +O(ε2),
such that ε = (∆t)2 and

H1(q, s,p, ps) =
1
12

[
ps
µ

pTM−1∇qU(q) + pTM−1U ′′(q)M−1p +
2p2
s

µ2
gkBT

− 1
2
∇qU(q)TM−1∇qU(q)− 1

2µ
(pTM−1p− gkBT )2

]
.

Following this,

ρ̃ =
1

gkBTC

∫
eNf η̂

1
|1 +H0

N/(gkBTeη̂)|
dps.

We use Newton’s method to solve r(η) = 0 with starting point

η0 = −
H +

p2
s

2µ
+ h2H1 −H0

N

gkBT

chosen so that r(η0) = −H0
N. The first step gives

η1 = η0 +
H0

N

gkBTeη0 +H0
N

.

By construction, r(η̂)− r(η1) = O((H0
N)2), and from a Taylor expansion, r(η̂)− r(η1) = (η̂ − η1)r′(η̂) +

O((η̂ − η1)2). Therefore, (η̂ − η1)r′(η̂) = O((H0
N)2). From the assumption that gkBTeη̂ >> O(H0

N),
r′(η̂) = gkBTe

η̂ +H0
N can be considered constant, and η̂ − η1 = O((H0

N)2). With the same assumption,
we can approximate η̂ = η1. Applying this to ρ̃ and expanding,

ρ̃ =
1

gkBTC

∫
eNfη0

(
1 +

(H0
N)

gkBTeη0
(Nf − 1)

)
dps +O(∆t4)

=
ρc
C̄
ef1(q,p)

(∫
ef2(ps) dps +

H0
N(g − 1)
gkBT

e
−f1(q,p)

g −H−H0
N

gkBT

∫
e(1− 1

g )f2(ps) dps

)
+O(∆t4),

where C̄ is a constant, ρc is the canonical distribution,

f1(q,p) =
−h2

24kBT

∑
j

∑
k

2pjpkUqjqk

mjmk
−
∑
j

U2
qj

mj
− 1
µ

∑
j

p2
j

mj
− gkBT

2
 ,

and

f2(ps) =
−1
gkBT

(
p2
s

2µ
+ h2 1

12

(
ps
µ
pTM−1∇qU(q) +

2p2
s

µ2
gkBT

))
.

Because the ratio ∫
ef2(ps) dps∫

e(1− 1
g )f2(ps) dps

=
√

1− 1
g

+O
(
∆t4

)
,

we can conclude that

ρ̃ =
ρc

C̃
exp{f1(q,p)}

(
1 +

√
1− 1

g

H0
N

kBT
exp

{
−f1(q,p)

g
− H −H0

N

gkBT

})
+O

(
∆t4

)
,

where C̃ is a constant.

8
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Using this modified distribution ρ̃, we can derive

ωc = ρc/ρ̃+O(∆t2) (8)

and the canonical average of A can be approximated by

〈A〉c,exact = 〈Aωc〉num/〈ωc〉num +O(∆t4), (9)

where 〈·〉num denotes numerical average over a sufficiently long trajectory [5].

5. Practical computation

One drawback of computing more accurate averages is the complexity and cost involved in deriving
the terms in the expansions presented in Section 4.1 or the weighting factor derived in Section 4.2.
The modified vector field is typically derived using Taylor series and contains high-order derivatives of
the vector field (or Hamiltonian). For systems arising in molecular simulation, this quickly becomes
intractable beyond the first term in the series.

Skeel and Hardy have demonstrated that it is possible to compute a modified Hamiltonian to arbitrar-
ily high-order without analytic calculation of higher derivatives [31]. This technique has been exploited
to improve drastically the efficiency of hybrid Monte Carlo [1, 2, 19]. In this section, we apply similar
finite differencing techniques to approximate many of the higher-order derivatives required for correcting
averages.

5.1. Microcanonical ensemble with the Verlet method
For w = ∇H and H̃(z̃) = 0, a more accurate average can be calculated using (3). However, this

adds additional computation at each timestep. The primary bottleneck is the O(N2) calculation in the
second derivative of H. Calculating ∇H is not a problem, since it is already required for timestepping.
Computing∇·∇H does add some overhead, but it is an O(N) calculation, assuming∇H can be computed
in O(N) time.

By construction, H(f̂) = 1
2

(
H

∇H · ∇H

)2

∇HTH
′′∇H + O(ε3), and thus the weight in (3) can be

written as

ω =
∇H̃ · ∇H
∇H · ∇H

−H ∇ · (∇H)
∇H · ∇H

+ 4
H ◦ f̂
H

+O(ε2). (10)

This way, we do not need to calculate the second derivative of H.
Consider the modified Hamiltonian to be H̃ = H + εH1 + ε2H2 +O(ε3). We can choose the mapping

function to be

f̃(z) = z + ε
H1(z)

∇H(z) · ∇H(z)
∇H(z), (11)

so that

H ◦ f̃ = H +
εH1

∇H · ∇H
∇H · ∇H +

1
2
ε2H2

1

∇HTH
′′∇H

∇H · ∇H
+O(ε3),

which means that

H ◦ f̃
εH1

=
H

εH1
+ 1 +

1
2
εH1
∇HTH

′′∇H
∇H · ∇H

+O(ε2)

=
−ε2H2

εH1
+

1
2
εH1
∇HTH

′′∇H
∇H · ∇H

+O(ε2).

Using all these approximations, we can conclude that

ω =
∇H̃ · ∇H
∇H · ∇H

+ εH1
∇ · (∇H)
∇H · ∇H

− 4
H ◦ f̃
εH1

− 4ε
H2

H1
+O(ε2).

9



T
h
is

is
a

c
o
rr

e
c
te

d
p
re

p
ri

n
t

o
f

th
e

fo
ll
o
w

in
g

a
rt

ic
le

:
N

.
A

ri
z
u
m

i
a
n
d

S
.D

.
B

o
n
d
,
A

p
p
li
ed

N
u
m

e
r
ic

a
l
M

a
th

e
m

a
ti
c
s

(2
0
1
2
)

in
p
re

ss
,

w
h
ic

h
w

il
l

b
e

p
u
b
li
sh

e
d

in
fi
n
a
l

fo
rm

a
t

h
tt

p
:/

/
d
x
.d

o
i.
o
rg

/
1
0
.1

0
1
6
/
j.

a
p
n
u
m

.2
0
1
2
.0

8
.0

0
5

Depending on the numerical method, H1 and H2 can be calculated by finite differencing in time, resulting
in an O(N) calculation.

To calculate ∇H̃ · ∇H, we can use finite differencing as

∇H̃ · ∇H =


∂H̃

∂qi
∂H̃

∂pi

 ·

∂H

∂qi
∂H

∂pi

 =

 −dp̃idtdq̃i
dt

 ·

∂H

∂qi
∂H

∂pi

 . (12)

This way, we do not need to calculate H̃.
Let us choose the Verlet method

pn+1/2 = pn − 1
2

∆t∇U(qn)

qn+1 = qn + ∆tM−1pn+1/2

pn+1 = pn+1/2 − 1
2

∆t∇U(qn+1)

(13)

for our problem. The modified Hamiltonian H̃ of the Verlet method is H + εH1 + ε2H2 +O(ε3), where
ε = ∆t2 and

H1 =
1
24

(2M−1pUqqM
−1p−∇qUM

−1∇qU),

H2 =
1

720
(−3(M−1∇U)TU

′′
(M−1∇U) + 12(M−1p)TU

′′
M−1U

′′
(M−1p)

+6U
′′′
{M−1p,M−1p,M−1∇U} − U

′′′′
{M−1p,M−1p,M−1p,M−1p}).

Converting spatial derivatives to time derivatives along the trajectory, this is the same as

H1 =
1
12

d

dt

∑
i

pi
mi

(
∂U

∂qi
) +

1
24

∑
i

(
∂U

∂qi

)2 1
mi
− (∆t)2

∑
i

1
72mi

(
d

dt

(
∂U

∂qi

))2

+O((∆t)4),

H2 =
1
80

∑
i

1
mi

(
d

dt

(
∂U

∂qi

))2

− 1
1440

d2

dt2
((∇U)TM−1∇U)− 1

720
d3

dt3
(M−1p · ∇U) +O((∆t)2),

which requires O(N) computation if computed using finite differencing in time.
The Verlet method calculates ∇H at each step, but ∇H̃ must be calculated additionally for our

weighting. Specifically,

∇H1 =


∂H1

∂qi
∂H1

∂pi

 =


1
12

(∑
j,km

−1
j pj

∂3U

∂qi∂qj∂qk
m−1
k pk −

∑
j

∂2U

∂qi∂qj
m−1
j

∂U

∂qj

)
1
6

(∑
jm
−1
i

∂2U

∂qi∂qj
m−1
j pj

)
 . (14)

Approximating ∇H1 by differentiation with respect to time requires

d2

(dt)2
(
∂U

∂qi
) =

∑
j,k

m−1
j pj

∂3U

∂qi∂qj∂qk
m−1
k pk −

∑
j

∂2U

∂qi∂qj
m−1
j

∂U

∂qj
+O((∆t)2),

d3qi
(dt)3

=
1
mi

d

dt
(
∂U

∂qi
) =

∑
j

(
m−1
i

∂2U

∂qi∂qj
m−1
j pj

)
+O((∆t)2).

Substituting these into (14),

∇H1 =


1
12

d2

(dt)2
(
∂U

∂qi
)

1
6mi

d

dt
(
∂U

∂qi
)

+O((∆t)2).
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This finite differencing scheme requires only a three-point stencil, rather than a five-point stencil as in
the general case.

5.2. Canonical ensemble with the Nosé-Poincaré method
The equations of motion for the Nosé-Poincaré Hamiltonian are

dq
dt

= M−1 p̃
s

dp̃
dt

= −s∇qU
ds

dt
= s

ps
µ

dps
dt

=
p̃TM−1p̃

s2
− gkBT −∆HN.

Finite differencing in time can be used to compute the higher-order derivatives in the weighting factor.
Since

d2U

dt2
=

d

dt

(
∇qU ·

dq
dt

)
=

d

dt

(
∇qU ·M−1 p̃

s

)
=

(
M−1 p̃

s

)T
U ′′
(
M−1 p̃

s

)
−∇qUM

−1∇qU −∇qU ·M−1p̃
ps
sµ
,

we can conclude that

pTM−1U ′′M−1p =
d2

dt2
U +∇qU ·M−1∇qU +

ps
sµ
∇qU ·M−1p̃, (15)

so that the weighting factor requires only O(N) computation, assuming that ∇qU is already computed
at each timestep.

6. Numerical experiments

To test the methods derived in the previous sections, we use a system of 512 point particles, each
with unit mass. We use a Lennard-Jones potential

U = 4
(

1
r12
− 1
r6

)
,

where r is the distance between two particles. The particles are placed in a cubic box with periodic
boundary conditions. The density is set to 0.95 and initial temperature is set to kBT = 1.5. The
timestep size is varied from 0.01 to 0.001. For the microcanonical problems we use the Verlet method
(13) with the weighted average (3), choosing f̂ from (11) and the weight ω from (10). We use second-
order central difference approximations to calculate (12) in the approximation of the weight (10). For
the canonical problems we use the GLA (6) with the weighted average (9), choosing ρ̃ from (7) and the
weight ωc from (8). We use fourth-order central finite difference approximation to calculate (15) in the
approximation of the weight (8).

In the problems considered here the exact solution is unknown, except for the temperature for the
Nosé-Poincaré case. However, we can use the fact that the numerical results (should) converge to the
exact value for a sufficiently long simulation time, as the timestep goes to zero. Since the unweighted
numerical values have lower variance than the weighted ones, we use a sequence of unweighted values
with differing timesteps to approximate the value when the timestep is zero. Of course, this extrapolation

11
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Figure 1: Error in internal energy as function of step size.
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Figure 2: Error in scalar virial as function of step size.

procedure is not used by the proposed methodology, and is only used to help verify we are achieving the
predicted higher-order of convergence.

Using a hypervirial theorem, the temperature can be calculated from

kBT =
〈B · ∇H〉
〈∇ ·B〉

,

for any bounded C1 vector field, B, which is periodic in q (see [20]). This result follows from

0 =
∫
∇ · (Be−

1
kBT H) =

∫
∇ ·Be−

1
kBT H − 1

kBT

∫
B · ∇He−

1
kBT H ,

which implies ∫
∇ ·Be−

1
kBT H =

1
kBT

∫
B · ∇He−

1
kBT H ,

assuming periodic boundary conditions, and that H is also periodic in q. In our numerical experiments,
we use B = p and B = ∇U for the temperature calculations.
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Figure 3: Error in kinetic energy temperature as function of step size.
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Figure 4: Error in hypervirial temperature as function of step size.

6.1. Microcanonical ensemble
We choose w = ∇H and use a three-point finite difference approximation for ∇H1 in these experi-

ments. The numerical average of internal energy U , scalar virial pTMq, temperature from kinetic energy
B = p, and temperature from hypervirial B = ∇U are plotted in Figs. 1, 2, 3, and 4, respectively. Aver-
age internal energy and temperature using hypervirial depend only on q and temperature using kinetic
energy depends only on p, but the scalar virial uses both q and p. In addition, the approximation

H
∇HH ′′∇H
(∇H · ∇H)2

= 2
H(f̂)
H

is used for the temperature using the hypervirial. All figures show averages from the Verlet method
with and without weights, and second- and fourth-order reference lines. The statistical error bars were
computed using the variance from over one hundred independent simulations, where each simulation uses
one billion timesteps. The figures clearly show that the averages calculated with weights are better than
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standard averages. However, we cannot conclude clear fourth-order convergence because of statistical
error.
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Figure 5: Error in average of
√
q2
1 + q2

2 as function of step size.

In the microcanonical ensemble, the temperature computed using different choices for B may differ
by a term which is O(1/N) in magnitude [20]. Hence, we cannot make direct comparisons to determine a
better approximate temperature. However, we can use differing estimates to help determine the statistical
error in the numerical simulations.

6.2. Multiple invariants
Typical molecular dynamics simulations use periodic boundary conditions, which breaks conservation

of angular momentum in N-body systems. To demonstrate that the methodology works for a system with
angular momentum preservation, we apply the Verlet method to the modified Kepler problem

H =
1
2
p2

1 +
1
2
p2

2 −
1√

q2
1 + q2

2

− 0.015√
q2
1 + q2

2

3 ,

and the mapping in Eq. (5). In this experiment, we calculate the average of
√
q2
1 + q2

2 with initial
condition (p1, p2, q1, q2) = (0, 2, 0.4, 0). Fig. 5 displays both standard and weighted averages. The figure
clearly shows fourth-order convergence in the weighted average.

6.3. Canonical ensemble
To test the derived weighting methodology for canonical ensemble averages, we perform a sequence

of numerical experiments using the Nosé-Poincaré method. In [5], it was suggested by the authors that
the constant in the Nosé-Poincaré Hamiltonian could be perturbed so that the modified Nosé-Poincaré
Hamiltonian was zero at t = 0, which allowed for significant simplification in the derivation of the
weighting factor, ωc. In Section 4.2, we generalized this result, computing a slightly different weighting
factor which would allow for the use of an unperturbed constant, so that the unmodified Hamiltonian
is zero at t = 0, as prescribed by original algorithm [6]. In the first experiment of this section, we
compare both of these methods when applied to the task of computing the kinetic energy temperature.
In the figures, “H = 0” corresponds to using an unperturbed value for the Nosé-Poincaré constant and
“Hmodified = 0” corresponds to using a perturbed value, as suggested in [5]. The results are shown
in Fig. 6. Although the use of a perturbed constant is more accurate, both weighting methods result
in higher-order averages. In a second experiment, we use an unperturbed Nosé-Poincaré constant, and
calculate the hypervirial temperature, which depends on q instead of p. This also results in the expected
convergence, as shown in Fig. 7. In a third experiment, we calculate the scalar virial, which depends on
both q and p, again using an unperturbed constant. The results in Fig. 8 show fourth-order convergence
for the weighted average error.
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Figure 6: Error in kinetic energy temperature as function of step size.
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Figure 7: Error in hypervirial temperature as function of step size.

6.4. Computational cost
To measure the computational overhead associated with computing more accurate averages, we mea-

sure the simulation time for a short simulation for computing the kinetic energy temperature, using 10,000
steps with a timestep size 0.01. In our simple implementation, the cost of a single force evaluation scales
quadratically with the number of particles (we are not using neighbor lists to reduce the complexity).
Fig. 9 shows the actual simulation time in seconds as a function of the number of particles. The left
panel shows the simulation time for computing weighted and unweighted microcanonical averages, using
the Verlet method. Computing the (more accurate) weighted averages increases the computational cost
as the number of particles grows, however the overall complexity is still quadratic in the number of par-
ticles (the same as the complexity of a force evaluation). The right panel shows the simulation time for
computing weighted and unweighted canonical averages, using the Nosé-Poincaré method. The top curve
corresponds to the simulation time for computing (the more accurate) weighted averages, but without
using any finite difference approximations. The two middle curves correspond to simulations where we
compute (a) standard unweighted averages and (b) weighted averages but using finite difference approxi-
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Figure 8: Error in scalar virial as function of step size.
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Figure 9: Simulation time as a function of the number of particles. The left panel shows the simula-
tion time for computing weighted and unweighted microcanonical averages. The right panel shows the
simulation time for computing weighted and unweighted canonical averages.

mations. In this case the additional cost of computing the weight is insignificant, so long as we use finite
differencing to reduce the cost of computing the weight.

7. Conclusion

Given a Hamiltonian system and a symplectic integrator, we have derived new weighting methods
to estimate and correct the truncation error in molecular dynamics averages. We showed that these
new methods can be used to reduce the numerical error and enhance the order of convergence without
additional high-overhead calculations. It is possible to extend this approach to any symplectic integrator
applied to a Hamiltonian system with known first integrals.
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